Изменение распределения крови в периферическом сосудистом русле при вставании – динамика сердечно-сосудистой системы

Сердечно-сосудистая система. Часть 7

Изменение распределения крови в периферическом сосудистом русле при вставании - динамика сердечно-сосудистой системы

В этой части речь идет движении крови по сосудам: об основных принципах гемодинамики;  о кровяном давлении – как факторе, обеспечивающим движение крови; об объемной и линейной скорости движения крови; об артериальном пульсе; о времени кругооборота крови; об особенностях движения крови по венам.

Основные принципы гемодинамики

Законы гидродинамики – учения о движении жидкостей по трубкам, изученные более 100 лет назад Пуазейлем, в основном применимы к гемодинамике, изучающей особенности движения крови по сосудам.

Скорость, с которой движется жидкость по трубкам, зависит от двух основных факторов: от разности давления жидкости в начале и конце трубки; от сопротивления, которое встречает жидкость на пути своего движения. Разность давлений способствует движению жидкости, и чем она больше, тем интенсивнее это движение. Этим закономерностям подчиняется и движение крови по сосудам.

Разность кровяного давления, определяющая скорость движения крови по сосудам, у человека велика. В аорте давление может быть равным 120-130 мм рт.ст., а в конце большого круга кровообращения, в полых венах, оно всего лишь 2-5 мм рт.ст., во время вдоха даже отрицательно – минус 2-4 мм рт.ст. Эта разница давлений обеспечивает быстрое движение крови по сосудам.

Сопротивление в сосудистой системе, уменьшающее скорость движения крови, зависит от ряда факторов: от длины сосуда и его радиуса (чем больше длина и меньше радиус, тем больше сопротивление), от вязкости крови (она в 5 раз больше вязкости воды) и от трения частиц крови о стенки сосудов и между собой.

Кровяное давление как фактор, обеспечивающий движение крови

Методы определения кровяного давления. У человека и любого животного величина кровяного давления может быть определена прямым путем. Для этого нужно ввести иглу шприца в сосуд и соединить ее с ртутным манометром. При этом величина давления будет выражена в миллиметрах ртутного столба. Прямой способ определения кровяного давления неудобен и не всегда приемлем.

Для определения величины кровяного давления у человека пользуются косвенным методом, предложенным Н.С.Коротковым. С этой целью используют сфигмоманометр Рива-Роччи. У человека обычно определяют величину кровяного давления в плечевой артерии.

Для этого на плечо накладывают манжету и нагнетают в нее воздух до полного сдавливания артерии, показателем чего может быть прекращение пульса. При этом с помощью фонендоскопа прослушивают тоны в сосуде. Тоны отсутствуют при сжатии сосуда и при свободном течении крови по сосудам.

После прекращения пульса из манжеты начинают постепенно выпускать воздух и в какой-то момент в сосуде прослушивается тон. В момент прослушивания первого звука манометр показывает величину максимального, или систолического давления.

В течение некоторого времени продолжают выпускать воздух из манжеты и все время прослушивают сосудистый тон, который постепенно ослабевание и исчезает полностью. В момент исчезновения тона манометр показывает величину минимального, или диастолического, давления.

Максимальное давление в плечевой артерии у взрослого здорового человека в среднем равно 105-120 мм рт.ст. Минимальное давление в плечевой артерии составляет 60-80 мм рт.ст.

Разность между максимальным и минимальным давлением называют пульсовой разностью или пульсовым давлением. Пульсовое давление колеблется от 35 до 50 мм рт.ст. Оно пропорционально количеству крови, выбрасываемому сердцем за одну систолу и в какой-то мере отражает величину систолического объема сердца.

Зависимость кровяного давления от различных гемодинамических условий. Давление крови в сосудах зависит от количества крови, выбрасываемой сердцем в артерии, и того сопротивления, которое встречает кровь, протекая по артериям, артериолам и капиллярам.

В обычных условиях деятельности организма сердце в момент систолы создает в аорте и легочной артерии давление, достаточное для того, чтобы обеспечить движение крови по всему сосудистому руслу. Часть этого давления необходима для придания определенной скорости движению крови, а другая – для преодоления сопротивления.

Значение сопротивления в создании определенной величины давления в сосуде хорошо иллюстрирует опыт с пьезометрами. Уровень жидкости в вертикальных трубках показывает величину давления в данном участке сосуда.

Если горизонтальная трубка имеет в отдельных участках разных диаметр, то наибольшее падение давления отмечается в месте ее сужения.

Давление крови изменяется вследствие колебания просвета сосудов: оно увеличивается вследствие сужения сосудов и уменьшается при их расширении.

На величину кровяного давления влияет изменение минутного объема крови. Так, например, при переливании крови у реципиента увеличивается минутный объем крови и кровяное давление. В то же время при кровопотерях уменьшаются минутный объем и кровяное давление.

Величина кровяного давления снижается при уменьшении венозного притока крови к сердцу. Это может происходить вследствие расширения капилляров: в них задерживается часть крови и уменьшается возврат крови к сердцу.

На величину кровяного давления влияет и вязкость крови: чем она больше, тем больше сопротивление току крови тем больше кровяное давление.

С помощью ртутного манометра на кимографе можно записать кривую кровяного давления, в которой различают три вида волн.

В ней различают волны I, II, и III порядка, которые отражают колебания пульсового давления, ритм дыхательных движений и состояние сосудодвигательного центра.

Изменение кровяного давления в различных участках кровяного русла. Кровяное давление, являясь одним из факторов, обеспечивающих движение крови, уменьшается от артериального конца сосудистой системы к венозному. У взрослого человека максимальное давление в аорте составляет 130-120 мм рт.ст.

В более мелких артериях кровь встречает большее сопротивление и давление здесь значительно падает до 80-60 мм рт.ст. Самое резкое уменьшение давления отмечается в артериолах и капиллярах, в артериолах оно составляет 20-40 мм рт.ст., а в капиллярах – 15-25 мм рт.ст. В венах давление уменьшается до 3-8 мм рт.ст.

, в полых венах давление отрицательное: оно равно -2, -4 мм рт.ст., т.е. оно на 2-4 мм рт.ст. ниже атмосферного. Это связано с изменением давления в грудной полости. Во время вдоха, когда давление в грудной полости значительно уменьшается, снижается и кровяное давление в полых венах.

Из приведенных данных видно, что кровяное давление в разных участках кровяного русла неодинаково. В крупных и средних артериях оно уменьшается незначительно, приблизительно на 10%, а в артериолах и капиллярах – на 85%.

Это говорит о том, что 10% энергии, развиваемой сердцем при сокращении, расходуется на продвижение в крупных и средних артериях, а 85% – на ее продвижение только по артериолам и капиллярам.

Давление крови в малом круге кровообращения значительно меньше, чем в большом. В легочной артерии оно составляет около 20% от давления в артериях большого круга кровообращения.

Артериальное кровяное давление изменяется под влиянием различных факторов. Оно увеличивается при выполнении физической работы и у спортсменов во время спортивных состязаний может достигать 200 мм рт.ст. Кровяное давление изменяется при различных эмоциональных состояниях: страхе, гневе, испуге и др. Оно зависит также от возраста.

Объемная и линейная скорости движения крови

Объемной скоростью движения крови называют количество крови, протекающей в единицу времени через сумму поперечных сечений сосудов данного участка сосудистого русла.

Через аорту, легочные артерии, полые вены или капилляры за одну минуту протекает одинаковый объем крови.

Поэтому к сердцу всегда возвращается такое же количество крови, какое было им выброшено в сосуды во время систолы.

Объемная скорость в различных органах может изменяться, она зависит от работы органа и величины его сосудистой сети. В работающем органе может увеличиваться просвет сосудов и вместе с ним – объемная скорость движения крови.

Линейной скоростью движения крови называют путь, пройденный кровью в единицу времени. Ее величина зависит от просвета сосуда: линейная скорость обратно пропорциональна площади поперечного сечения сосуда. Чем шире суммарный просвет сосудов, тем медленнее движение крови, а чем он уже, тем больше скорость движения крови.

По мере разветвления артерии скорость движения крови в них уменьшается, так как суммарный просвет ветвей сосудов больше, чем просвет исходного ствола. У взрослого человека просвет аорты приблизительно составляет 8 см2, а сумма просветов капилляров в 500-1000 раз больше, она равна 4000-8000 см2.

Следовательно, линейная скорость движения крови в аорте в 500-1000 раз больше, чем в капиллярах, она равна 500 мм/сек, а в капиллярах только 0,5 мм/сек.

По мере того как капилляры переходят в вены, а мелкие вены соединяются в более крупные, просвет сосудов уменьшается, и соответственно, увеличивается скорость движения крови.

Постольку в среднем две артерии соединяются в одну вену, то скорость движения крови в них в два раза меньше.

Две полые вены примерно в два раза шире аорты, и скорость движения крови в них равна половине скорости в аорте.

Линейная скорость движения крови может изменяться в разных участках сосудистого русла. При постоянной объемной скорости суждение сосудов в одном из участков сосудистого русла приводит к повышению линейной скорости, а расширение сосудов – к ее снижению.

Артериальный пульс

Одной из характеристик деятельности сердечно-сосудистой системы является пульс.

Пульсом, или пульсовой волной, называют ритмическое колебания стенки сосуда, вызванные повышением давления в нем в момент систолы и распространяющиеся по стенкам артерий. В распространении пульсовой волны большое значение имеет эластичность сосудов.

Она обеспечивает растяжение аорты при повышении в ней давления. Возникшее при этом колебание стенки аорты распространяется по всем артериях до капилляров, где пульсовая полна гаснет.

Распространение пульсовой полны не связано со скоростью движения крови. Независимость распространения пульсовой волны от скорости движения крови хорошо видна из сравнения скоростей их распространения.

Определено, что от момента систолы и до появления в лучевой артерии пульсу проходит всего 0,1 сек, тогда как расстояние от сердца до места прослушивания пульса 1 м. За это время кровь по артерии продвигается только на 5 см. Пульсовая волна распространяется со значительно большей скоростью, чем движется кровь.

Скорость распространения пульсовой волны в аорте у человека среднего возраста оставляет 5,5-8 м/сек, а в периферических артериях – 6-9,5 м/сек, тогда как скорость движения крови в артериях равна 0,3-0,5 м/сек.

Кривую артериального пульса можно записать с помощью прибора сфигмографа, и называют ее сфигмограммой. В этой кривой различают анакротическое колено (подъем кривой) и катакротическое колено (спуск кривой).

Анакротическое колено соответствует началу фазы изгнания крови, когда происходит расширение стенки аорты выбрасываемой кровью. Катакротическое колено соответствует концу систолы, когда давление в сосуде начинает уменьшаться. Но в момент спуска кривой на ней появляется второй подъем, называемый дикротическим подъемом.

Он связан с тем, что при понижении давления крови в сердце в момент диастолы кровь из аорты направляется в сердце и отталкивается от закрытых полулунных клапанов.

Регистрация пульса имеет большое практическое значение для клиники и физиологии. Пульс дает возможность судить о частоте, силе и ритме сердечных сокращений.

Время кругооборота крови.

Кровь, выброшенная из левого желудочка в аорту, возвращается в правое предсердие, совершив полный кругооборот. Возврату крови в сердце способствует ряд факторов. Важнейшим из них является разность давления крови между аортой и полыми венами. Этому же способствует остаток движущей силы, которая сообщается крови сокращением сердца.

Кругообороту крови способствует также присасывающая деятельность грудной клетки и самого сердца.

Скорость кругооборота крови определяется путем введения радиоактивных изотопов или безвредной краски и наблюдения их передвижения. Если ввести меченые атомы в бедренную вену правой ноги, то время, через которое данное вещество появится в бедренной вене левой ноги, будет временем кругооборота крови.

Время кругооборота крови у человека в состоянии покоя равно 20-25 сек. Это составляет приблизительно 27 систол. Около половины этого времени расходуется на продвижение крови по малому кругу, несмотря на то что малый круг значительно короче.

Это связано с тем, что кровь по широким сосудам протекает быстро, так как их суммарный просвет небольшой, а основное время затрачивается на продвижение крови по артериолам и капиллярам.

Их особенно много в большом круге кровообращения, и их суммарный просвет велик.

Время кругооборота крови уменьшается при физической нагрузке и может составлять 10 сек. Оно изменяется с возрастом.

Особенности движения крови по венам.

От движения крови по венам зависят возврат крови к сердцу и его наполнение кровью. Вены – сосуды тонкостенные, их мышечный слой невелик. Они обладают меньшей эластичностью по сравнению с артериями и поэтому легко растягиваются притекающей к ним кровью, вследствие чего кровь в них может застаиваться.

На движение крови в венах влияет разность давления крови между аортой и полыми венами, а также разность давления между мелкими и крупными венами. По мере продвижения крови к сердцу давление в венах уменьшается, а это облегчает движение крови.

Сила сердечного толчка, сообщающего скорость движению крови, в венах значительно снижена и значение этого фактора минимально. Здесь важен ряд других дополнительных факторов. Так, в основных магистральных венах имеются клапаны, которые являются кармановидными выростами их эндотелия и расположены так, что пропускают кровь только к сердцу.

Поэтому любое сдавливание вен приводит к продвижению крови к сердцу. В связи с этим важное значение имеют чередующиеся сокращения и расслабления мышц при движении.

При сокращении мышц вены сдавливаются и кровь проталкивается к сердцу, а при их расслаблении вены расширяются, давление в них несколько уменьшается и кровь устремляется в них из артерий (работает “мышечный насос”).

Важным фактором движения крови по венам является присасывающая деятельность грудной клетки и сердца.

Источник: http://www.psyworld.ru/for-students/lectures/anatomy-and-physiology-of-a-childrens-organism/812-2009-10-30-10-21-18.html

Изменения сердечно-сосудистой системы, крови и обмена веществ при беременности

Изменение распределения крови в периферическом сосудистом русле при вставании - динамика сердечно-сосудистой системы

Во время беременности возникает новая функциональная система мать-плацента-плод , обусловливающая целый ряд изменений в организме женщины. Эти изменения касаются всех органов и систем материнского организма. Они направлены на обеспечение оптимальных условий для развития плода, благоприятного течения беременности и успешного ее завершения.

Физиологические приспособительные изменения в организме беременной оказывают существенное влияние на ее сердечно-сосудистую систему, которая функционирует с возрастающей нагрузкой.

Повышение нагрузки на сердечно-сосудистую систему обусловлено: формированием нового маточно-плацентарного сосудистого русла, увеличением объема циркулирующей крови, возрастанием общей массы тела и повышением внутрибрюшного давления.

Происходящие во время беременности изменения в сердечно-сосудистой системе направлены на обеспечение жизнедеятельности организма беременной, а также доставки к плоду в достаточном количестве кислорода и питательных веществ и удаление продуктов его метаболизма.

Увеличение объема циркулирующей крови отмечается с I триместра беременности, достигая максимальных значений к 36 неделям. С увеличением объема циркулирующей крови сердечный выброс повышается в среднем на 30-40 % от исходной величины выброса до беременности.

Увеличение этого показателя отмечается уже с 8 недели беременности. Минутный объем сердца возрастает с началом беременности, достигая максимума к 28-32 неделям, и составляет 6-7 л/мин.

В этот же период существенно возрастает венозный возврат крови к сердцу, и усиливаются сокращения его правых отделов.

В ответ на повышенную нагрузку увеличивается масса сердца и его размеры и изменяется его положение. Сердце несколько расширяется за счет гипертрофии миокарда. Расширение в области правого предсердно-желудочкового клапана может вызывать незначительный обратный заброс крови через клапан с появлением систолического шума.

Смещение диафрагмы увеличенной маткой сдвигает сердце влево и кпереди таким образом, что верхушечный толчок перемещается кнаружи и вверх. Несмотря на повышенную нагрузку на сердце во время беременности, у здоровых женщин не происходит нарушения ритма сердца.

У беременной с заболеваниями сердца и его низкими функциональными резервами повышенная активность может спровоцировать сердечную недостаточность.

Артериальное давление во время нормальной беременности не повышается. С 9 недель беременности артериальное давление снижается на 8-15 мм рт. ст., сохраняясь на этом уровне до середины беременности.

Такое снижение артериального давления обусловлено снижением периферического сосудистого сопротивления, образованием маточного круга кровообращения с низким сопротивлением, а также сосудорасширяющим действием эстрогенов и прогестерона.

Во время беременности отмечается увеличение частоты сердцебиений , достигая максимума в третьем триместре беременности и превышая исходные величины на 15-20 уд в минуту. При этом в норме частота пульса может составлять 80-90 уд в минуту.

Центральное венозное давление не меняется. Особенно высокое венозное давление отмечается в бедренной вене у лежащей на спине пациентки (сдавление маткой нижней полой вены).

Поэтому нередко во время беременности возникает варикозное расширение вен малого таза, наружных половых органов и нижних конечностей. Растяжение вен во время беременности может достигать 150 % от исходного уровня.

Венозные концы капилляров расширяются, снижая тем самым интенсивность тока крови.

Начиная с середины беременности, в положении лежа на спине, увеличенная в размерах матка может сдавливать нижнюю полую вену и аорту. Сужение просвета нижней полой вены уменьшает венозный возврат крови к сердцу, что приводит к снижению сердечного выброса до 25 % от исходного. При этом артериальное давление быстро снижается.

Кожные покровы становятся бледными с цианотичным оттенком. Отмечается нитевидный пульс. Первой помощью в этой ситуации является изменение положения тела пациентки, которую следует повернуть на правый или левый бок. После этого состояние быстро улучшается, артериальное давление и пульс нормализуются.

Если этого не сделать, может наступить смерть плода, а также выраженное ухудшение состояния беременной.

Во время беременности активизируется ренин-ангиотензиновая система . В циркулирующей крови возрастает содержание ангиотензина II, который способствует задержке натрия и воды в организме, увеличивает объем циркулирующей крови и оказывает вазоконстрикторное действие. Поэтому даже здоровым беременным женщинам следует ограничивать потребление соли и сохранять умеренный водный режим.

Изменения со стороны крови

Среди многочисленных изменений, происходящих со стороны крови во время беременности, следует отметить увеличение объема циркулирующей крови , которое начинается с 10 недель беременности, постоянно нарастает и достигает своего пика в 36 недель, составляя 25-50 % от исходного уровня. Наибольшее увеличение объема циркулирующей крови сопровождается процессом роста плаценты в I и во II триместрах. Увеличение объема циркулирующей крови связано с возрастанием объема маточно-плацентарного круга кровообращения, увеличением массы молочных желез и объема венозного русла.

Прирост объема циркулирующей крови происходит в основном за счет увеличения объема циркулирующей плазмы и в меньшей степени за счет объема и количества эритроцитов. Так, объем плазмы возрастает на 35-50 % в сравнении с исходным уровнем, а количество эритроцитов только на 12-15 %.

Вследствие этого в 26-32 недели отмечается относительное снижение количества эритроцитов и содержания гемоглобина, несмотря на их абсолютное увеличение. При этом развивается так называемая «физиологическая анемия», которая характеризуется снижением гематокритного числа до 30 % и снижением уровня гемоглобина.

Уменьшение содержания гемоглобина до 110 г/л является нижней границей нормы для беременных.

Количество лейкоцитов во время беременности увеличивается в основном за счет возрастания количества нейтрофилов.

Во время беременности в свертывающей системе крови происходят приспособительные изменения, которые, с одной стороны, направленные на создание условий для быстрой остановки кровотечения, а с другой – на оптимальное обеспечение маточно-плацентарного и плодово-плацентарного кровотока. Происходит повышение активности факторов свертывания крови, особенно фибриногена. Отмечается снижение активности фибринолиза.

Тромбоциты играют важную роль в системе свертывания крови. Значительного изменения их количества при нормальном течении беременности не происходит.

В процессе нормального течения беременности, начиная с 12-13 недель отмечается повышение уровня ряда факторов свертывания крови и увеличение уровня фибриногена в плазме.

Снижается активность веществ, замедляющих свертывание крови, к которым относятся антитромбин III и протеин С.

Фибринолитическая активность плазмы снижается и становится наименее выраженной в родах.

Изменения обмена веществ

Во время беременности происходит активация всех обменных процессов для обеспечения возрастающих потребностей плода, плаценты, матки, а также метаболизма в организме матери.

В процессе развития беременности происходит интенсификация белкового обмена и накопление белковых субстанций для обеспечения растущего плода и жизнедеятельности организма матери пластическим материалом. Активируется обмен жиров , о чем свидетельствует повышение уровня липидов в сыворотке крови.

Изменяется и метаболизм углеводов . Происходит накопление гликогена в печени, мышцах, матке и плаценте. Метаболические потребности плода покрываются усиленным потреблением глюкозы. В ответ на это увеличивается секреция инсулина.

Начиная с 15 недель беременности уровень глюкозы у беременных после ночного голодания значительно ниже, чем у небеременных женщин. Оптимальным для беременных является уровень глюкозы 4,4-5,5 ммоль/л. У беременных гипогликемия определяется, когда содержание глюкозы в крови уже ниже 3,3 ммоль/л.

Определенные изменения происходят и с минеральным обменом . В организме беременной происходит задержка солей кальция и фосфора, которые, поступая к плоду, расходуются на построение его скелета.

Концентрация железа в сыворотке крови беременной по мере развития беременности снижается, составляя 21 мкмоль/л в I триместре, 14,6 мкмоль/л во II триместре и 10,6 мкмоль/л в III триместре.

Снижение концентрации железа обусловлено рядом причин: увеличением объема циркулирующей плазмы, возрастающим общим объемом эритроцитов, переходом железа к плоду для синтеза фетального гемоглобина. В организме матери происходит также задержка калия, натрия, магния, меди. Все эти элементы принимают активное участие в обмене веществ.

При физиологическом течении беременности характерным является задержка жидкости в организме.

Изменения водного обмена характеризуются повышением онкотического и осмотического давления в тканях, что обусловлено задержкой альбуминов и натрия. Создаются условия для накопления жидкости в тканях.

При этом несколько увеличивается объем внутриклеточной жидкости, и, в основном, возрастает объем внеклеточной жидкости.

Для обеспечения нормального течения беременности увеличивается потребность в витаминах , которые необходимы для обеспечения обменных процессов в организме матери и плода.

Витамин Е принимает участие в правильном развитии беременности. Интенсивность потребления железа для синтеза гемоглобина обеспечивается достаточным количеством витаминов С, В1, В2, В12, РР и фолиевой кислоты.

Витамины не синтезируются в организме и поступают только извне с продуктами питания.

Определенные изменения наблюдаются со стороны кислотно-основного состояния , что проявляется в виде физиологического метаболического ацидоза и дыхательного алкалоза .

Запись к специалистам по телефону единого колл-центра: +7(495)636-29-46 (м. “Щукинская” и “Улица 1905 года”). Вы можете также записаться к врачу на нашем сайте, мы Вам перезвоним!

Источник: https://www.art-med.ru/articles/list/art232

Ортостатические изменения кровообращения

Изменение распределения крови в периферическом сосудистом русле при вставании - динамика сердечно-сосудистой системы

Ортостатические изменения кровообращения (греч, orthos прямой, правильный + statos стоящий) — гравитационное перераспределение крови при смене положения тела с горизонтального на вертикальное и связанные с этим реакции сердечно-сосудистой системы, направленные на сохранение в этом положении адекватного кровоснабжения организма, особенно жизненно важных органов.

Формирование систем регуляции адаптационных гемодинамических реакций на ортостатику относится к наиболее позднему этапу биологической эволюции в связи с появлением прямо стояния и прямохождения — специфической черты человека.

Относительная филогенетическая «молодость» этих систем обусловливает возможность несовершенства их индивидуального формирования, зависимость от степени тренированности человека и повышенную ранимость при патогенных влияниях окружающей среды.

В случае недостаточности адаптационных и компенсаторных реакций на ортостатическую нагрузку развиваются ортостатические расстройства кровообращения (ОРК), к-рые могут приводить к диффузной ишемии головного мозга и при нек-рых заболеваниях быть непосредственной причиной смерти больного.

Патогенное влияние на организм человека длительного неподвижного пребывания в вертикальном положении (ортостазе) было известно с древних времен и даже использовалось как способ казни — распятие (привязывание к вертикально укрепленному кресту). В 17 в. Лоуэр (R.

Lower, 1669) правильно объяснил природу ОРК у больного с выраженным варикозом вен нижних конечностей перераспределением крови в сосуды нижней части тела за счет релаксации вен. В 19 в. Рейнар (Raynard, 1868), затем Хилл (L. Е.

Hill, 1895) в эксперименте на животных показали, что длительный ортостаз ведет к смерти от «гравитационного шока» — резких нарушений кровообращения за счет перераспределения крови в ниже расположенные сосуды под действием силы тяжести.

Углубленное понимание причин и патогенеза ОРК стало возможным лишь во второй половине 20 в. в связи с развитием знаний о функц, роли тонических реакций емкостных и резистивных сосудов и о регуляции системного кровообращения и мозгового кровотока.

Физиология и патофизиология

Смена горизонтального положения тела на вертикальное приводит к разнонаправленным изменениям гидростатического давления в сосудистой системе относительно нек-рой гидростатически индифферентной точки (ГИТ), к-рая у здоровых лиц располагается на несколько сантиметров ниже уровня диафрагмы.

Действие силы тяжести затрудняет возврат крови к сердцу из вен, расположенных ниже ГИТ; в них даже у здоровых лиц при расслабленных мышцах ног дополнительно задерживается от 300 до 800 мл крови.

Вследствие этого ударный объем сердца снижается, а при длительном ортостазе в областях высокого гидростатического давления отмечается также избыточная фильтрация жидкой части крови в капиллярах, что ведет к нек-рой гемоконцентрации и сни-шению объема циркулирующей крови.

Перемещению крови в сосуды ниже уровня ГИТ при кратковременном стоянии и особенно при ходьбе в норме препятствуют активное напряжение и сокращение мышц нижних тсонечностей и брюшного пресса; в этих условиях уменьшается емкость вен и обеспечивается запирающая функция их клапанного аппарата.

В артериях и венах, расположенных на одном уровне выше ГИТ, гидростатическое давление снижается в ортостазе одинаково, и перепад давлений по длине капиллярных отрезков, а следовательно, и капиллярный кровоток практически не изменяются.

При этом трансмуральное давление в капиллярах верхней части тела, за исключением мозга, несколько снижается; в капиллярах мозга оно почти не изменяется из-за одновременного снижения внутричерепного давления цереброспинальной жидкости.

Однако при падении сердечного выброса крови и снижении АД вероятность уменьшения притока крови к капиллярам тем большая, чем выше их расположение над ГИТ, поэтому при отсутствии компенсаторных гемодинамических реакций вероятность недостаточности притока в ортостазе наибольшая для сосудов мозга.

Изменение условий гемодинамики в ортостатике (в период смены положения тела) и в ортостазе отражается на ряде гомеостатических параметров общего и мозгового кровообращения, поддержание к-рых становится возможным лишь путем системных и регионарных гемодинамических реакций, компенсирующих гравитационные возмущения в сердечно-сосудистой системе.

Такие реакции обеспечиваются повышением активности симпатоадреналовой системы из-за ослабления депрессорных влияний на нее со стороны барорецепторов каротидных синусов. Специальные исследования у здоровых субъектов и у лиц с ортостатическими расстройствами кровообращения показали, что гемодинамические реакции на ортостатику протекают у взрослых в два цикла.

Первый из них — первичные реакции на ортостатику — представляет собой сложный рефлекторный стереотип, включающий: а) повышение тонуса емкостных сосудов, расположенных ниже ГИТ; б) закрытие части функционирующих артериовенозных анастомозов в тканях конечностей; в) первичное повышение тонуса периферических артерий; г) начальное падение тонуса мозговых артерий.

Реакции этого цикла «включаются» самим падением гидростатического давления на уровне каротидных барорецепторов (примерно на 20— 25 мм рт. ст.) и не зависят от предшествующей им абсолютной динамики сердечного выброса и притока крови к мозгу.

По своей сущности реакции первого цикла являются адаптационными, формирующимися под влиянием изменений внутрика-ротидного давления по принципу обратной связи.

Второй цикл реакций развивается в ответ на снижение сердечного выброса и артериальную гипотензию при недостаточности первичных адаптационных реакций.

Он состоит из компенсаторных реакций, частично повторяющих реакции первого цикла, но более интенсивных (сокращение артерий конечностей и спланхнической системы с повышением общего периферического сопротивления кровотоку и устойчивое снижение тонуса мозговых артерий) и включает также учащение сердечных сокращений вплоть до выраженной ортостатической тахикардии.

Реакции как первого, так и второго цикла направлены в основном на две цели: во-первых, на обеспечение адекватного сердечного дебита (тоническая реакция емкостных сосудов и учащение сердечных сокращений); во-вторых, на поддержание внутриаортального давления крови с централизацией кровообращения (тонические реакции системных резистивных сосудов и снижение тонуса мозговых артерий).

Регуляция компенсаторных ортостатических реакций осуществляется не только нервными, но и гуморальными механизмами. Установлено, что в ортостазе растут активность ренина и содержание в плазме крови ангиотензина II и альдостерона.

Их участие в регуляции АД в ортостазе находится в зависимости от содержания натрия в организме. По данным Санчо (J. Sancho) с соавт.

(1976), ингибиции фермента, превращающего ангиотензин I в ангиотензин II, существенно не влияет на гемодинамику в ортостазе при нормальном содержании натрия в крови, но ведет к резким ее нарушениям при обессоливании организма.

В то же время включение ряда гуморальных регуляторных механизмов зависит, по-видимому, от реакции симпатической нервной системы: при высоком поражении спинного мозга ортостатическая регуляция гемодинамики полностью нарушена. Это подчеркивает ведущее значение нервных механизмов в формировании адаптационных и компенсаторных реакций сердечно-сосудистой системы на ортостатику.

Патогенез и клиническое значение ортостатических расстройств кровообращения

Развитие ОРК может быть обусловлено патологией как систем регуляции ортостатических реакций, так и исполнительных звеньев сердечно-сосудистой системы (пороки и другие болезни сердца, органические поражения стенок сосудов, артериовенозные аневризмы и др.).

Гемодинамическую основу патогенеза ОРК составляют преимущественно три вида нарушений: 1) снижение венозного возврата крови к сердцу, ведущее к уменьшению объема кровообращения; 2) нарушение компенсаторной тонической реакции системных резистивных сосудов, обеспечивающей стабильность давления крови в аорте; 3) нарушение регионарных механизмов перераспределения сниженного объема кровообращения. Дополнительную патогенетическую роль может играть недостаточное учащение сердечных сокращений на ортостатику; лишь в редких случаях, напр, при полной поперечной блокаде сердца (см.), этот механизм существенно определяет патогенез ОРК, в т. ч. развитие ортостатического обморока (см.) или Морганьи — Адамса — Стокса синдрома (см.).

Значение каждого из перечисленных основных нарушений в патогенезе отдельных ОРК неодинаково и зависит от характера основного заболевания.

Снижение венозного возврата крови к сердцу играет роль в патогенезе большинства ОРК; ведущее значение оно имеет при органическом поражении стенок системных вен, в частности при их генерализованном варикозе, а также при функц, гипотонии вен у детрениро-ванных лиц, у больных с патологией центральной или периферической нервной системы и при недостаточности надпочечников. Нарушение регионарных механизмов компенсации ортостатического снижения притока крови к мозгу или миокарду обычно связано с органическим сужением просвета сонных (либо вертебральных) или коронарных артерий.

Наиболее часто развитие ОРК связано с дефицитом адренергических влияний на сердечно-сосудистую систему, определяющим одновременное участие нескольких гемодинамических факторов патогенеза ОРК: исходную функц, гипотонию системных вен, снижение или даже отсутствие адаптационной тонической реакции вен на ортостатику и уменьшение компенсаторных изменений деятельности сердца и тонической реакции системных резистивных сосудов (артериол, сфинктеров артериовенозных анастомозов) на снижение сердечного выброса.

Многообразие заболеваний, сопровождающихся ОРК, определяет и клин, значение последних. При нек-рых болезнях, особенно при генерализованном поражении симпатической нервной системы (см.

Шая — Дрейджера синдром), ОРК занимают центральное место среди клин, проявлений и нередко обусловливают летальный исход; при других заболеваниях, сопровождающихся дефицитом адренергических влияний, напр, при аддисоновой болезни (см.

), а также при органической патологии сердца и сосудов, ОРК реже являются ведущими проявлениями болезни, но могут составлять существенную их часть или определять формирование таких характерных симптомов, как снижение АД (см.

Гипотензия артериальная), бледность кожи, снижение температуры конечностей, ортостатические головокружения и т. д. Одной из причин ОРК стало применение в леч. практике фармакол, средств, действующих на периферическую симпатическую нервную систему,— ганглиоблокирующих средств (см.

), производных гуанетидина, метилдофа и других гипотензивных средств (см.). Особенности клин, проявлений ОРК, анализ к-рых способствует установлению их патогенетической природы и диагностике основного заболевания, лучше всего выявляются путем специального обследования с помощью ортостатических проб (см.).

См. также Кровообращение.

Библиография: Вотчал Б. Е. Венозный тонус в клинике, в кн.: Совр, пробл. физиол. и патол, сердечно-сосудистой системы, под ред. В. В. Ларина, с. 42, М., 1967; Жмуркин В. П. Ортостатические расстройства кровообращения, в кн.: Актуальн, вопр. тер. в кардиол., под ред. И. П. Замотаева, с. 24, М.

, 1977; Трон X. Л. и Кирш К. Активные и пассивные компоненты реакций венозной системы у человека и животных при ортостатической нагрузке, Труды Международн. симпозиума по регуляции емкостных сосудов, с. 197, М., 1977, библиогр.; F luck D. С. a. Salter С.

Effect of tiltung on plasma catecholamine levels in man, Cardiovasc. Res., v. 7, p. 823, 1973; O p a r i 1 S. a. o. Role of renin in acute postural homeostasis, Circulation, v. 41, p. 89, 1970; Sancho J. a. o.

The role of the renin-angiotensin-aldoste-rone system in cardiovascular homeostasis in normal human subjects, ibid., v. 53, p. 400, 1976; T a n i m u r a M. a. o. Reproducibility of the orthostatic responses and orthostatic dysregulation complaints in Japanese junior and senior high school students, Jap.

Circulat. J. (En.), v. 41, p. 287, 1977; Thulesius O. Pathophysiological classification and diagnosis of orthostatic hypotension, Cardiology, v. 61, suppl. 1, p. 180, 1976.

В. П. Жмуркин.

Источник: https://xn--90aw5c.xn--c1avg/index.php/%D0%9E%D0%A0%D0%A2%D0%9E%D0%A1%D0%A2%D0%90%D0%A2%D0%98%D0%A7%D0%95%D0%A1%D0%9A%D0%98%D0%95_%D0%98%D0%97%D0%9C%D0%95%D0%9D%D0%95%D0%9D%D0%98%D0%AF_%D0%9A%D0%A0%D0%9E%D0%92%D0%9E%D0%9E%D0%91%D0%A0%D0%90%D0%A9%D0%95%D0%9D%D0%98%D0%AF

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.