Содержание электролитов и осмолярность биологических жидкостей

Содержание

Осмолярность крови: понятие, нормы в анализах, о чем говорят изменения значений

Содержание электролитов и осмолярность биологических жидкостей

З. Нелли Владимировна, врач лабораторной диагностики НИИ трансфузиологии и медицинских биотехнологий

Осмолярность крови (ОСК) подразумевает осмолярность плазмы, поскольку именно в ней растворены осмотически активные вещества. Осмолярность плазмы крови – это совокупность всех растворенных в одном ее литре кинетически активных частичек (анионов, катионов, органических соединений).

Какие они – осмотически активные вещества, которые определяют показатель, называемый осмолярностью крови? Прежде всего, это катионы натрия (Na+), которые вместе с анионами хлора (Cl-) обусловливают осмотическую активность плазмы, а также анион гидрокарбоната (НСО3-). Осмотически активные ионы свободно проходят через капиллярную стенку, попадают внутрь сосуда, где забирают молекулы воды (Н2О) и уносят ее в межклеточное (интерстициальное) пространство. Например, всего один ион натрия способен захватывать до 300 молекул Н2О.

Осмолярность плазмы крови – значимый лабораторный показатель, применяемый в клинической лабораторной диагностике для выявления ОПН (острая почечная недостаточность) на ранних этапах ее развития, когда другие биохимические тесты (creat – креатинин, urea – мочевина) еще «молчат».

Нормы осмолярности для ликвора, крови, мочи и всего организма

Нормальные значения осмолярности таких биологических жидкостей, как, кровь, вернее, ее сыворотка (плазма), а также спинномозговая жидкость (ликвор) мало отличаются, чего нельзя сказать о моче, в которой нормы данного параметра превосходят в 2 – 4 раза.

Таблица 1. Нормальные значения осмолярности различных биологических сред организма

Биологическая средаГраницы нормы
Плазма (сыворотка) крови280 – 300 мосм/л
Цереброспинальная жидкость (ликвор)270 – 290 мосм/л
Урина (моча)600 – 1200 мосм/л
ИО (индекс осмолярности)2,0 – 3,5
КСВ (клиренс свободной воды)(-1,2) – (-3,0) мл/мин

Числовые показатели осмолярности крови у детей, хотя и не столь существенно, но все же отличны от таковых у взрослых (таблица 2). ОСК (норма) у детей начинает изменяться, начиная с 9-месячного возраста. К году она достигает 280 – 300 мосм/л (норма взрослого человека), оставаясь в данных пределах, независимо от возраста человека – до конца жизни.

Таблица 2. Норма осмолярности плазмы крови у детей

Возраст ребенкаНорма, мосм/л
Новорожденные до 1 недели жизни275 – 300
Новорожденные от 1 недели до 1 месяца жизни276 – 305
Дети от 1 месяца до 1 года жизни274 – 305
Дети от года и старше280 – 300

Следует заметить, что приведенные выше нормы для взрослых и детей могут отличаться от таковых в других лабораториях. В связи с этим пациентам нужно в первую очередь ориентироваться на границы нормальных значений, обозначенные в бланке анализа конкретной лаборатории.

Факторы, которые поддерживают значения осмолярности

Катионы натрия и другие осмотически активные вещества создают осмотическое давление (ОД) в водных пространствах организма.

Натрий – внеклеточный катион (Na+), рост его концентрации в плазме в любом случае приведет к увеличению ОД. При этом будет стимулирован питьевой центр (центр жажды) и повысится производство антидиуретического гормона (АДГ) – вазопрессина. Влияние вазопрессина на V2-рецепторы канальцев почек повысит обратное всасывание воды и ее задержку в организме.

При снижении содержания этого внеклеточного катиона можно ожидать обратный эффект: питьевой центр подавляется, производство антидиуретического гормона падает, мочевыделение – усиливается. Подобные изменения в ту или иную сторону концентрации ионов натрия обычно (за исключением отдельных случаев) идут параллельно колебаниям значений осмолярности плазмы крови.

Определенную роль в данном случае играют белки и, хотя само по себе ОД, которое создают протеины незначительно, оно существенным образом влияет на обмен воды между внутрисосудистым водным пространством и интерстициальной частью.

Немаловажными факторами влияния в изменениях осмолярности плазмы крови можно назвать глюкозу и мочевину.

И особенно их эффект заметен при развитии патологических процессов, поэтому для расчета теоретической осмолярности у больного берут кровь на определение уровня:

  • Натрия;
  • Мочевины;
  • Глюкозы.

Получив значения концентраций перечисленных показателей, производят расчет теоретической осмолярности крови по формуле:

Осмолярность плазмы (сыворотки) = 2 х натрий (Na, ммоль/л) + мочевина (CH4N2O, ммоль/л) + глюкоза (C6H12O6, ммоль/л).

Другие показатели, связанные с ОСК

Таким образом, осмолярность крови (плазмы или сыворотки) – важный параметр, свидетельствующий о сохранении либо расстройстве динамического равновесия воды в организме. Его измеряют с помощью специального лабораторного оборудования или рассчитывают по формуле после проведения необходимых биохимических анализов (натрий, мочевина, глюкоза).

Кроме описываемого объекта исследования (осмолярность), в таблице, расположенной выше, приведены и другие лабораторные тесты: клиренс свободной воды (КСВ – довольно чувствительный и важный показатель концентрационной способности почек) и индекс осмолярности (ИО – соотношение осмолярности мочи и плазмы крови). Они имеют прямое отношение к определению функциональных способностей почек при развитии острой почечной недостаточности (ОПН) и также рассчитываются по формулам.

Правда, и это пока не все: существует еще один показатель, имеющий отношение к осмолярности, который называется осмотическим окном. Норма его – менее 6 мосм/л. Осмотическое окно измеряется в мосм/л или мосм/кг, рассчитывается, исходя из значений ОСК, полученной при осмометрии – фактической, и ОСК, выведенной по формуле – теоретической:

Осмотическое окно = ОСК факт. – ОСК теорет.

Например, 287 мосм/кг – 284 мосм/кг = 3 мосм/кг (соответствует норме). Если осмотическое окно больше 6, но меньше 10 мосм/л, то врачи подозревают развитие кето-, лактат- либо почечного ацидоза.

Если же уровень данного показателя пересекает 10 мосм/л и стремится к повышению, то появляются основания думать о тяжелом отравлении (этиловым или метиловым спиртом, а также другими органическими веществами, которые способны влиять на ОСК).

Помощь осмометрии и расчета осмолярности в диагностике и лечении

Определение осмолярности крови и мочи, расчет индекса осмолярности и клиренса свободной воды по формуле – исследования отнюдь не простые. Различные способы осмометрии (метод повышения точки закипания, метод депрессии точки замерзания) используются не каждым лечебным учреждением и представляют собой сложные лабораторные анализы.

Однако в медицине осмолярность крови считается важным диагностическим критерием, поскольку этот индикатор позволяет установить ряд патологических состояний или даже прогнозировать их (развитие ОПН), когда классические показатели пока не реагируют. Очевидно, что в первую очередь это касается тяжелых заболеваний почек.

Концентрации креатинина и мочевины, исследуемые в подобных ситуациях, изменятся лишь спустя некоторое время (ОПН – от 3 до 4 суток), когда половина структурных единиц почки, занятых производством мочи (нефронов), выйдет из строя и не сможет осуществлять свое функциональное назначение.

Определение осмолярности плазмы и мочи, индекса осмолярности и клиренса свободной воды позволит прогнозировать и/или выявлять развитие острой почечной недостаточности уже на 1 – 2 сутки.

Таким образом, данный показатель будет применен и окажет помощь в диагностике:

  • Острой почечной недостаточности на самом раннем этапе формирования;
  • Гипоосмотических синдромов (падение уровня показателя ниже 280 мосм/л), сопровождаемых рядом неспецифических признаков: головной болью, утомляемостью, заторможенностью, тошнотой, беспричинной рвотой;
  • Гиперосмотических синдромов (рост числовых значений осмолярности – выше 350 мосм/л), которые наиболее часто создают условия для развития коматозных состояний при СД (сахарном диабете);
  • Причин гипонатриемии (уменьшение концентрации катионов натрия – ↓Na+);
  • Гипернатриемии (возрастание содержания катионов натрия – ↑Na+);
  • Псевдогипонатриемии, обусловленной увеличением концентрации жиров (гипертриглицеридемия) и белков (гиперпротеинемия), молекулы которых имеют более крупные размеры, нежели молекулы натрия, и не оказывают воздействия на изменение осмолярности крови;
  • ТУР-синдрома (синдром водной интоксикации, как осложнение некоторых операций, например, резекции предстательной железы);
  • Несахарного мочеизнурения (несахарный диабет), сахарного диабета (гипергликемические состояния, диабетический кетоацидоз);
  • Отравлений токсическими веществами, которые также принадлежат к группе осмотически активных (этанол, метанол, кетоновые тела, лактат, этиленгликоль и др.);
  • Острого повышения внутричерепного давления (внутричерепная гипертензия – ВЧГ).

Кроме этого, от данного лабораторного теста будет помощь в лечении заболеваний, требующих проведения трансфузионно-инфузионных мероприятий (оценка эффективности терапии), а также гипоосмолярных гипергидратаций и коматозных состояний, сопровождаемых повышением осмолярности плазмы крови.

О чем свидетельствует анализ?

Как разобраться в полученных на руки анализах? Наверное, это возможно, если попробовать руководствоваться приведенными ниже ориентирами:

  1. Известно, что изменение осмолярности плазмы крови идут параллельно колебаниям содержания катионов натрия в ней. Следовательно, возрастание концентрации Na+ (гипернатриемия) и увеличение ОСК (больше 290 мосм/л) приведет к повышению активности питьевого центра, человека будет не покидать ощущение жажды, а стимуляция синтеза вазопрессина начнет препятствовать выводу водных ресурсов из организма. Увеличение осмолярности плазмы крови на 50 – 60 мосм/л – опасный признак, поскольку в данной ситуации может наступить гибель больного от отека головного мозга.
  2. И, наоборот, снижение уровня Na+ (гипонатриемия) и снижение ОСК (ниже 280 мосм/л), угнетая производство вазопрессина, способствует усиленному выходу воды из организма посредством почек.

Между тем, все не так просто, поскольку, ориентируясь на концентрацию натрия, можно столкнуться с парадоксальными ситуациями, которые следует учитывать, к примеру: натрий в крови и ОСК снижаются, а осмолярность мочи растет.

При этом в чрезмерно концентрированной моче отмечается увеличение содержания Na+.

Подобные обстоятельства могут быть обусловлены влиянием такого этиологического фактора, как СНСАДГ (синдром несоответствия секреции антидиуретического гормона), при котором производство АДГ не зависит от того, насколько организм нуждается в воде.

И получается, что для полноты картины, свидетельствующей о состоянии организма, необходимо определить количество натрия в крови и моче, а также провести анализ на осмолярность данных биологических сред. Кроме этого, в бланке анализа должен присутствовать и такой показатель, как сахар крови (гипергликемия увеличивает ОСК) и мочевина.

Безусловно, есть и другие примеры несоответствия некоторых показателей между собой, однако эта информация может только запутать пациента. А речь идет только об осмолярности крови…

: осмолярность и её вычисление

Вывести все публикации с меткой:

  • Анализы
  • Электролитные нарушения

Источник: https://sosudinfo.ru/krov/osmolyarnost/

ОФС.1.2.1.0003.15 Осмолярность

Содержание электролитов и осмолярность биологических жидкостей

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Взамен ГФ XII, ч. 1, ОФС 42-0047-07

Осмолярность это характеристика растворов, выражающая их осмотическое давление через суммарную концентрацию кинетически активных частиц в единице объема раствора (мОсм/л).

Существующие инструментальные методы позволяют определять не осмолярность, а осмоляльность – концентрацию кинетически активных частиц на килограмм растворителя (мОсм/кг).

Кинетически активные частицы – это молекулы, ионы или ионные комплексы одного или нескольких растворенных веществ, свободно распределенные во всем объеме растворителя и обладающие способностью к хаотическому перемещению внутри раствора.

Осмолярность и осмоляльность характеризуют создаваемое растворами осмотическое давление.

Осмолярность является одной из важнейших характеристик инфузионных растворов. На этикетках растворов для инфузий должно быть указано теоретическое значение их осмолярности. В случае, когда теоретическая осмолярность не может быть рассчитана, указывают среднее значение осмоляльности для данного лекарственного средства.

Теоретическая осмолярность может быть рассчитана по формуле:

где:

Сосм – осмолярность раствора, миллиосмоль на литр (мОсм/л);

m – содержание вещества в растворе, г/л;

M – молярная масса вещества, г;

n – суммарное число ионов, образующихся из одной молекулы растворенного вещества в результате диссоциации (n = 1 для недиссоциирующих веществ, n = 2, 3 для веществ, образующих при растворении соответствующее количество ионов).

На практике, количество частиц (n) несколько меньше теоретически рассчитанного и приближенно может быть описано формулой:

                                     (2),

где:

n — реальное количество частиц, образующихся при растворении данного вещества;

nо — теоретически рассчитанное количество частиц (n=1,2,3…);

 — молярный осмотический коэффициент, учитывающий взаимодействие между частицами в растворе и зависящий только от количества растворенного вещества.

Коэффициент  определяется экспериментально.

Растворы, равные по осмолярности 0,9 % раствору натрия хлорида, называют изотоническими. Для изотонических растворов теоретически рассчитанные значения осмолярности находятся в пределах 239 – 376 мОсм/л.

Осмолярность растворов, состоящих из нескольких компонентов, может быть определена как сумма осмолярностей всех компонентов.

Концентрацию инфузионных растворов принято выражать как массо-объемную (в г/л), поэтому удобным представляется рассчитывать содержание кинетически активных частиц в миллиосмолях на литр (осмолярность), а не на килограмм (осмоляльность) раствора.

Различиями между значениями осмолярности и осмоляльности растворов с осмолярностью, близкой к осмолярности 0,7-1,1 % раствора натрия хлорида или ниже, можно пренебречь (теоретическое значение осмотического давления 0,9 % раствора натрия хлорида – 308 мОсм/л; экспериментальное значение – 286 мОсм/л); для более концентрированных растворов (например, 10 % раствора натрия хлорида) осмолярность может быть определена по формуле:

     С(мОсм/л) = С(мОсм/кг) ∙ ρ                         (3)

где: ρ – плотность раствора, кг/л.

Примечания. 1. Расчет теоретических границ осмолярности проводят следующим образом: минимальное значение – осмолярность раствора, содержащего минимально допустимые количества ингредиентов; максимальное значение – осмолярность раствора, содержащего максимально допустимые количества ингредиентов

  1. 2. При наличии в растворе высокомолекулярного вещества за его молярную массу берется средняя молекулярная масса фракции.
  2. 3. Гидрокарбонаты при расчете осмолярности учитываются как соли одноосновной кислоты.

Определение осмоляльности водных растворов

Для определения осмоляльности могут быть использованы следующие методы: криоскопический, мембранная и паровая осмометрия.

Криоскопический метод

Метод основан на понижении точки замерзания растворов по сравнению с точкой замерзания чистого растворителя.

1 осмоль на килограмм воды понижает точку замерзания на 1,86 °С. Измерение этих изменений лежит в основе криоскопического метода.

Данная зависимость может быть выражена следующей формулой:

где:

Сосм  — осмоляльность раствора (мОсм/кг)

Т2 — температура замерзания чистого растворителя (˚С);

Т1 — температура замерзания испытуемого раствора (˚С);

К — криометрическая постоянная растворителя (для воды: 1,86).

В настоящее время определение осмоляльности растворов проводится с использованием автоматических криоскопических осмометров.

Необходимое количество испытуемого раствора помещают в ячейку прибора. Далее проводят измерение согласно инструкции, прилагаемой к прибору. При необходимости прибор калибруют с помощью стандартных растворов натрия или калия хлорида, которые перекрывают определяемый диапазон осмоляльности (таблица 1).

Таблица 1 – Стандартные справочные значения понижения температуры замерзания и эффективности осмотической концентрации водных растворов натрия и калия хлоридов

Аналитическая концентрация соли р, г/кг Н2OПонижение температуры замерзанияDТзам., КЭффективная (осмотическая) концентрацияmэф, ммоль/кг Н2O
Растворы натрия хлорида
5,6490,3348180
6,2900,3720200
9,1880,5394290
9,5110,5580300
11,130,6510350
12,750,7440400
16,000,9300500
Растворы калия хлорида
7,2530,3348180
8,0810,3720200
11,830,5394290
12,250,5580300
14,780,6696360
20,710,9300500

Метод мембранной осмометрии

Метод основан на использовании свойства полупроницаемых мембран избирательно пропускать молекулы веществ.

Движущей силой процесса является процесс осмоса. Растворитель проникает в испытуемый раствор до установления равновесия; возникающее при этом дополнительное гидростатическое давление приближенно равно осмотическому давлению и может быть рассчитано по формуле:

  (5)

где:

Осмоляльность может быть рассчитана по формуле:

Сосм =pосм / R ∙ T(6)

где    R универсальная газовая постоянная (8,314 Дж/мольК)

T абсолютная температура (˚K).

Примечание. Данный метод применим только для растворов высокомолекулярных веществ (104 – 106 г/моль). При анализе растворов, содержащих электролиты и другие низкомолекулярные вещества, будет определяться только осмотическое давление, создаваемое высокомолекулярными компонентами раствора.

Определение осмоляльности испытуемого раствора проводят с помощью мембранного осмометра. Предварительную калибровку прибора и измерения проводят в соответствии с инструкцией к прибору.

Метод паровой осмометрии

1 осмоль на килограмм воды понижает давление пара на 0,3 мм рт. ст. при температуре 25 °С. Измерение этих изменений лежит в основе метода паровой осмометрии.

Метод основан на измерении разности температур, которая возникает на термисторах, помещенных в измерительную ячейку, насыщенную парами растворителя в случае, если на один из них нанесена капля чистого растворителя, а на другой — испытуемого раствора.

Разница температур возникает по причине конденсации паров растворителя на капле раствора, так как давление пара растворителя над этой поверхностью меньше. При этом температура капли раствора повышается за счет экзотермического процесса конденсации до тех пор, пока давление пара над каплей раствора и давление чистого растворителя в ячейке не сравняются.

При нанесении на оба термистора чистого растворителя разность температур равна нулю. Разность температур практически пропорциональна моляльной концентрации раствора.

Определение осмоляльности испытуемого раствора проводят с помощью парового осмометра. Предварительную калибровку прибора и измерения проводят в соответствии с инструкцией к прибору.

Скачать в PDF ОФС.1.2.1.0003.15 Осмолярность

Источник: https://pharmacopoeia.ru/ofs-1-2-1-0003-15-osmolyarnost/

Как определить осмолярность крови?

Содержание электролитов и осмолярность биологических жидкостей

Осмолярность крови является концентрацией в различной степени частичек всевозможных химических элементов и соединений.

Суммарное значение концентрации растворенных элементов из расчета показателей на один литр жидкости называют осмолярностью.

Принято считать, что этот показатель фиксирует данные по всем кинетически активным частичкам. Такое исследование относят к наиболее сложным лабораторным тестам.

Особенности проявления недуга

Определение осмолярности является довольно непростой работой лаборантов. Такой вид диагностики позволяет своевременно выявлять признаки различных недугов и нарушений. В основном показатели осмолярности характеризуются повышением или понижением его уровня в крови.

Основными причинами для изменения главных показателей и изменений в крови могут быть различные факторы. Понятием гиперосмолярности обозначают высокий уровень концентрации активных частиц, а гипоосмолярность, наоборот, резкое снижение. Характеризует отсутствие нарушений показатель, который попадает в установленные нормы.

Если у обследуемого выявлена низкая концентрация осмолярности, значит кроме такого показателя должны присутствовать соответствующие симптомы характерные такому состоянию:

  1. Сильная слабость и быстрая утомляемость.
  2. Частые головные боли.
  3. Приступы тошноты.
  4. Рвотные позывы.

При высокой концентрации осмолярности больной испытывает совершенно другие симптомы:

  1. Различные рефлексы патологического характера.
  2. Плохая концентрация внимания.
  3. Сознание в угнетенном состоянии.
  4. Слабое мочеиспускание.
  5. Поражение лицевых нервов, нарушение рефлексов глотания и жевания.
  6. Низкая температура тела.
  7. Слишком влажные слизистые тела и кожа.
  8. Апатичное состояние.

Если выражаться более простым языком осмолярность — это своеобразная густота или, наоборот, более жидкая концентрация крови. То есть это показатель состояния биологической жидкости. Слишком густая кровь или мало концентрированная — все эти факторы являются яркими признаками развивающихся отклонений и нарушений в организме человека.

Для изучения осмолярности в лаборатории исследуют плазму крови. Такой вид диагностики довольно часто характеризует состояние пациента при сахарном диабете, так как именно такая категория людей имеет склонность к повышенной концентрации этого показателя.

Изучение осмолярности очень важно для различных видов заболевания, так как контроль за состоянием плазмы крови помогает подбирать более корректный тип лечебной терапии и предотвращать развитие серьезных недугов и нарушений.

Нюансы наблюдаемого показателя

Увеличение показателя в крови характеризуется низкой осмолярностью в моче и является признаком нарушений в паренхиме почек. Любые изменения этого параметра связаны с метаболическими процессами распределения жидкости в организме. Для нормальной жизнедеятельности человек должен потреблять около полтора-два литра воды в зависимости от возраста и веса.

Большой процент полезных элементов поступает в организм вместе с питьем, а остальная часть из жидкости, которая есть в пище. Выводится использованная или отработанная жидкость из организма такими системами, как легочная, кишечная, почечная и с помощью эпидермиса. За сутки человеческий организм способен выводить около полтора литра воды вместе с мочевиной и кишечными опорожнениями.

Из-за нарушения водного баланса и неправильного выведения жидкости из организма у человека развивается повышенная или низкая осмолярность, как в крови, так и в моче. Избыток воды вызывает высокое давление и сильную отечность тканей, а низкая ее концентрация приводит сильному обезвоживанию и, соответственно, к повышенной вязкости крови.

Многие заболевания развиваются из-за избытка или сильной потери жидкости в организме. Увеличение жидкости и баланса электролитов приводит к:
  1. Заболеваниям почек.
  2. Сердечным нарушениям.
  3. Заболеваниям крови и системы кровообращения.
  4. Потеря воды в организме приводит к таким нарушениям:
  5. Нарушениям глюкозного баланса.
  6. Проблемам с надпочечниками.
  7. Болезням почек.
  8. Диабетам различного характера.

Благодаря показателям осмолярности водно-солевой баланс легко определить и корректировать с помощью специальной терапии.

Осмотическая концентрация может сигнализировать о различных физиологических проблемах.

Любое изменение активных веществ, объема воды сразу чувствуют отростки нервной системы, которые сигнализируют о неполадках, что провоцирует появление определенных реакций и дальнейшее развитие нарушений.

Выведение жидкости и частичек электролитов происходит благодаря контролю со стороны нервной системы, почек и различных гормонов.

Особенности исследования

Анализ на концентрацию осмолярности в крови характеризует наличие и количество химических элементов, которые в ней расположены. Такой тест проводят на биоматериале, который собирают из вены.

Осмотическая концентрация контролируется рядом показателей. Именно эти параметры изучают специалисты в полученных образцах. После того, как будут обследованы и собраны необходимые данные, специалисты заносят все показатели в специальные таблицы соответствий, с помощью которых они выводят нормы и отклонения.

Анализ на осмотическую концентрацию необходим:

  1. Для измерения баланса жидкости и состава химических элементов в плазме крови.
  2. Для диагностики снижения или повышения содержания и количества жидкости в биоматериале.
  3. Измерения количества вырабатываемого гормона, отвечающего за концентрацию воды в организме.
  4. Для выяснения причины обезвоживания или отечности, а также других серьезных нарушений.
  5. Обнаружения наличия ядов, метанола и других вредных веществ.

Подготовка к сбору биоматериала

Для того, чтобы анализы были точными и показали ту диагностическую картину, которая соответствует самочувствию больного, необходимо правильно подготовиться к диагностике.

Прежде всего, на приеме у специалиста нужно сообщить обо всех препаратах, которые на данный момент употребляются.

Специалист, в свою очередь, определит можно их ненадолго отменить или придется учитывать с определенной погрешностью полученные результаты.

Кроме того следует обязательно сказать врачу о приеме любых пищевых добавок, так как они тоже существенно оказывают влияние на полученные результаты.

Следует понимать, что анализ сдается натощак, поэтому за восемь часов до него нельзя пить или принимать пищу. Не следует также курить и употреблять алкогольные продукты.

Лучше ограничиться простой щадящей пищей. Сладкие блюда тоже лучше исключить из своего рациона.

Если перед анализом была проведена процедура переливания крови или донорский сбор биоматериала, тогда на несколько недель исследование лучше перенести, чтобы восстановился естественный баланс в организме.

При сборе биоматериала особых рисков или осложнений не бывает, так как анализ является вполне стандартной процедурой.

Единственным последствием может быть только синяк или небольшая припухлость затронутой вены.

Но это в случае, если сбор материала проводил неопытный лаборант или после забора крови была плохо зажата вена.

Осмолярность плазмы является комплексным показателем, который формируется за счет определения количества глюкозы, натрия, наличия азота в крови и мочевины, а также рядом других элементов.

Только после того, как были получены и собраны все данные, выводятся общие показатели, которые приравниваются к существующим нормам.

Так как анализ очень обширный его исследование занимает довольно длительное время, поэтому результаты могут прийти только в течение недели.

Специалист, оценив полученные результаты, может сформировать для себя общую картину о работоспособности почек, надпочечников и других органов, выполняющих функцию выделительной системы.

Грамотно расшифровать данные исследования может только лечащий врач, так как он владеет всей информацией о пациенте и имеет возможность сопоставить все показатели вместе.

Источник: https://osostavekrovi.ru/sostav/osmolyarnost-krovi.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.